Intracellular redistribution of acetyl-CoA, the pivotal point in differential susceptibility of cholinergic neurons and glial cells to neurodegenerative signals.
نویسندگان
چکیده
Intramitochondrial decarboxylation of glucose-derived pyruvate by PDHC (pyruvate dehydrogenase complex) is a principal source of acetyl-CoA, for mitochondrial energy production and cytoplasmic synthetic pathways in all types of brain cells. The inhibition of PDHC, ACO (aconitase) and KDHC (ketoglutarate dehydrogenase complex) activities by neurodegenerative signals such as aluminium, zinc, amyloid β-peptide, excess nitric oxide (NO) or thiamine pyrophosphate deficits resulted in much deeper losses of viability, acetyl-CoA and ATP in differentiated cholinergic neuronal cells than in non-differentiated cholinergic, and cultured microglial or astroglial cell lines. In addition, in cholinergic cells, such conditions caused inhibition of ACh (acetylcholine) synthesis and its quantal release. Furthermore, cholinergic neuronal cells appeared to be resistant to high concentrations of LPS (lipopolysaccharide). In contrast, in microglial cells, low levels of LPS caused severalfold activation of NO, IL-6 (interleukin 6) and TNFα (tumour necrosis factor α) synthesis/release, accompanied by inhibition of PDHC, KDHC and ACO activities, and suppression of acetyl-CoA, but relatively small losses in their ATP contents and viability parameters. Compounds that protected these enzymes against inhibitory effects of neurotoxins alleviated acetyl-CoA and ATP deficits, thereby maintaining neuronal cell viability. These data indicate that preferential susceptibility of cholinergic neurons to neurodegenerative insults may result from competition for acetyl-CoA between mitochondrial energy-producing and cytoplasmic ACh-synthesizing pathways. Such a hypothesis is supported by the existence of highly significant correlations between mitochondrial/cytoplasmic acetyl-CoA levels and cell viability/transmitter functions respectively.
منابع مشابه
P136: Role of Muscarinic Receptors in Schizophrenia
Schizophrenia is a severe psychiatric illness with a lifetime prevalence of ˜1% that imposes a huge toll on patients, their families and public health services worldwide. Delusions, hallucinations, disorganized speech, grossly disorganized or catatonic behavior and negative symptoms constitute the core symptoms of schizophrenia. Although the neurotransmitter dopamine plays a prominent role in t...
متن کاملEffects of spironolactone and fludrocortisone on neuronal and glial toxicity induced by N-methyl-D-Aspartate and chloroquine in cell culture
Spironolactone has produced beneficial effects in animal models of neurodegenerative disorders. However, the underlying mechanisms of this agent on neurons and glia are mostly unknown. Therefore, we aimed to show the effects of spironolactone and fludrocortisone, a mineralocorticosteroid receptor agonist, on neuronal and glial toxicity induced by N-methyl-D-aspartate (NMDA) activation and chlor...
متن کاملNerve Growth Factor and the Trans-differentiation of Human Dental Pulp Stem Cells Into Cholinergic-like Neurons
Introduction: Cell therapy has been widely considered as a therapeutic approach for neurodegenerative diseases and nervous system damage. Cholinergic neurons as one of the most important neurons that play a significant role in controlling emotions, mobility, and autonomic systems. In this study, human dental pulp stem cells (hDPSCs) were differentiated into the cholinergic neurons by β-mercapto...
متن کاملCholinergic Differentiation of neural precursor cells derived from mouse embryonic stem cells increased by Shh, LIF and RA
Introduction Cholinergic system is one of the important systems of mammalian CNS. Cholinergic neurons distributed in brain and spinal cord and contributed to principal functions like: consciousness, learning and memory, and motor control. In this study we investigated the differentiation potentiality of mouse embryonic stem cells toward cholinergic neurons. The aim of this study was to evaluate...
متن کاملDelivery of Epidermal Neural Crest Stem Cells (EPI-NCSC) to hippocamp in Alzheimer\'s Disease Rat Model
Background: Alzheimer’s disease (AD) is characterized by progressive neuronal loss in hippocamp. Epidermal neural crest stem cells (EPI-NCSC) can differentiate into neurons, astrocytes and oligodendrocytes. The purpose of this study was to evaluate the effects of transplanting EPI-NCSC into AD rat model. Methods: Two weeks after induction of AD by injection of Amyloid-β 1-40 into CA1 area of ra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical Society transactions
دوره 42 4 شماره
صفحات -
تاریخ انتشار 2014